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Estimating the Current Mean of a Process 

Subject to Abrupt Changes 
Emmanuel YASHCHIN 

Department of Mathematical Sciences 
IBM Corporation 
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Yorktown Heights, NY 10598 

This article discusses estimation of the current process mean in situations in which this parameter is 
subject to abrupt changes of unpredictable magnitude at some unknown points in time. It introduces 
performance criteria for this estimation problem and discusses in detail the relative merits of several 
estimation procedures. I show that an estimate based on exponentially weighted moving average 
of past observations has optimality properties within the class of linear estimators, and I propose 
alternative estimating procedures to overcome its limitations. I consider two primary types of estimation 
procedures, Markovian estimators, in which the current estimate is obtained as a function of the previous 
estimate and the most current data point, and adaptive estimators, based on identification of the most 
recent changepoint. We give several examples that illustrate the use of the proposed techniques. 

KEY WORDS: Changepoint; Control charts; Exponentially weighted moving average; Filtering; Pro- 
cess control. 

The problem of estimating the current process mean in 
the presence of abrupt changes was considered by Barnard 
(1959), Chernoff and Zacks (1964), West (1986), Chen 
and Tiao (1990), Kenett and Zacks (1992), McCulloch 
and Tsay (1993), and others. Many of the proposed 
estimation procedures are Bayesian, and they require a 
priori assumptions about the location or magnitude of 
the changes. There exist several non-Bayesian proce- 
dures (e.g., see Wetherill 1977), but their properties are 
often unknown, and it is not clear how they should be 
assessed. This article introduces a criterion called in- 
ertia that can be used to compare non-Bayesian esti- 
mation procedures for data subject to abrupt changes 
and applies it to several known and new estimation 
procedures. 

Section 1 describes the concept of inertia. Section 2 
shows that exponentially weighted moving average 
(EWMA) estimators are optimal in the class of linear es- 
timators. It also shows how EWMA estimators can be 
improved and introduces some more general Markovian 
procedures. Section 3 discusses adaptive schemes that are 
based on identifying the last changepoint and using the re- 
sulting last stable segment of data to obtain the estimate. 
Section 4 discusses implementation of the proposed esti- 
mation methods. Section 5 considers unknown nuisance 
scale parameters. Section 6 gives an application. 

1. MOTIVATION, PERFORMANCE CRITERIA, 
AND THE BASIC APPROACH 

Consider a sequence of independent observations {Xi}, 
where Xi has mean ,ui, standard deviation ai, and 
cumulative distribution function F[(x - ,i)/ai]. For 
example, Xi may represent the number of defects found in 

the ith produced item, the waiting time of the ith customer 
in a queue, the difference of the actual amount of product 
shipped in the ith month from the predicted amount, or 
output from an automatic feedback-forward control device 
measured at the ith period of time. 

In applications of interest in this article, the means fi 
may change abruptly. The changes are infrequent and their 
times and magnitudes are unpredictable, but it is important 
to know the current /i. For example, in many statistical 
process control applications, the process/product param- 
eters might be adjusted to improve quality if it is known 
by how much /i deviates from its target value. 

In this article, I assume that the sequence of means 
{,ii} is piecewise constant. Because I am interested in 
non-Bayesian approaches, I focus on estimates 'i that 
depend only on X, ..., Xi and not on any prior informa- 
tion about iui. Further assume that there is a loss function 
L(ji,, ui) and the total loss incurred through period i is 
the sum of losses accrued for periods 1,..., i. Through- 
out this article, I shall assume that L (i , ,i) is a function 
of (Ai - i)/Ori. 

The following example may help to clarify the model: 

Example 1.1. Semiconductor wafers, which are disks 
about 20 centimeters in diameter, are often processed in 
lots of about 20 wafers. In one of the hundreds of manu- 
facturing steps, a layer of metal is deposited on each wafer 
in a lot. Uniform metal thickness is crucial. Usually, the 
mean metal thickness ,ti for a lot is stable across many lots 
of wafers, but variations in raw materials, maintenance, or 
other factors can cause abrupt shifts. When the current P.i 
is known, the shifts are less important because the pro- 
cess can easily be adjusted to bring it on target. The main 
problem, therefore, is to estimate /.i well. 

311 



EMMANUEL YASHCHIN 

Every lot contains three test wafers and one measure- 
ment of metal thickness is taken from each of them. Denote 
by Xil, Xi2, and Xi3 the measurements corresponding to 
the ith lot. The average Xi = (Xil + Xi2 + Xi3)/3 is 
reported and used to obtain an updated mean estimate ,i. 
Suppose that the jth wafer of the ith lot is declared non- 
conforming if its thickness Xij is more than A from a 
target thickness and engineers want to control the average 
(across lots) fraction of nonconforming wafers. Suppose 
that Xij are independent and normal with mean Ai and 
variance 1. As a result of the decision accepted in this 
stage, the process mean will be shifted away from the tar- 
get by ILi - -i I, and one can define the loss function as 
the expected fraction of nonconforming wafers, 

L('i, Hi) = 1 - -(A + i - 
Ai) 

+ c(-A + H -- i), (1.1) 

where ( is the standard normal cdf. 
To simplify the presentation, at this point let us as- 

sume that ai = r a, where a is a known constant (in 
Sec. 5, I shall discuss more general situations). I shall 
look for the best sequences of estimators {i } that pos- 
sess the following two properties: First, they must be 
location equivariant; that is, ,i (X1 + c,..., Xi + c) 
Ai (X1 ., Xi ) + c, for any constant c. Second, if /,i =_ t 
for all i > T, the distribution of Tii must converge to a 
limiting (steady-state) distribution that does not depend 
on X1, X2, .., XT- 

To obtain estimators that adapt quickly to abrupt 
changes, we must first decide on the comparison criteria. 
In the estimation process we have two sources of loss, (1) 
loss that occurs even when ,i does not change (steady- 
state loss) and (2) extra loss that occurs when ,i changes. 
After a change, ,ji returns (more or less quickly) to its 
steady-state distribution. I shall call the extra loss inertia. 
There is a trade-off between steady-state loss and inertia, 
and my efforts will focus on minimizing inertia for a fixed 
level of steady-state loss. To put the problem in a more 
formal framework, suppose that Azi changes once some- 
where between times T and T + 1. That is, ,ui = i, - 8a 
for i < T and ,Li = , for i > T. Then ET,SL(rT+j, j,) 
is the expected loss incurred in period T + j, j > 1. Now 
let us fix a finite number Eo and define the class LE(Eo) 
of estimators as follows: 

Definition 1.1. The estimation process {i} belongs 
to the class LE(Eo) if it is location equivariant, and when 
/,i = I, - 8a for i = 1,..., T < oo and /,i = iL for 
i > T, then limjyo ET,,L('T+j, [1) = Eo, for any T, 8, 
and ft. 

If no changes in ui occur after time T, any two sequences 
of estimators that belong to LE(Eo) are asymptotically 
eq,livalent in the sense that they eventually reach the same 
expected loss per period. Within the class LE(Eo), I prefer 
the sequences of estimators that adapt most quickly to the 

change in mean-that is, have the least excess loss after 
the change over some horizon of interest, H. After the 
change, the expected excess loss in period T + j (j > 1) 
is ET,8L(r2T+j, A) - Eo. 

Definition 1.2. Suppose that /i = 't - 8a for i < T 
and fti = Lt for i > T. The inertia of a sequence of 
estimators {,i } in the class LE(Eo) is defined by 

H 

I(S) = lim E[ET,sL(.7T+j, ) - Eo. 
T-=ooj 

(1.2) 

Note that I () implicitly depends on H, Eo, F, and L. 
For large H (in most practical cases 50 is large enough), 
the dependence of 1 (8) on H becomes negligible because 
sensible estimation procedures typically reach the steady 
state within 50 observations after the change. In this ar- 
ticle we shall use the horizon H = oo, though all the 
significant digits reported in numeric values remain un- 
changed for any H > 50. Similarly, values of T around 
50 are typically high enough to achieve the limiting value 
I(8) in (1.2). 

I (3) can be interpreted as the excess loss caused by lack 
of information about a change: If {Ui } can detect the time 
T and magnitude 3 of a change immediately, 1(8) = 0. 
Estimators that depend on more than just the current Xi do 
not have zero inertia. In Example 1.1, I (8) is the expected 
increase in the total number of nonconforming wafers af- 
ter the change that can be attributed to the failure of the 
estimation scheme to anticipate the exact time and size of 
an abrupt change in Lt. 

Now the problem of estimating [it can be formulated in 
a simple way: Find a procedure in the class LE(Eo) that 
minimizes I(8) in some sense. For example, minimize 
I(80), where 80 is a fixed "most likely" value of 8; the 
maximum value of I (3) (minimax procedure); or the mean 
E (I(8)) computed under the assumption that 3 is random 
with a known distribution. 

Minimizing over all kinds of estimators can be difficult, 
though. To simplify the problem, first limit the type of 
estimator and then optimize the curve 1(3) that can be 
achieved for that type of estimator. To further simplify 
the problem, assume quadratic loss L (i, ti) = A[('i - 

[i )/r]2. 

2. MARKOVIAN ESTIMATION PROCEDURES 

Among the most popular procedures are those of linear 
type, 

~i = aoXi + alXi-I +- - + an-lXi-n+l, (2.1) 

for some 1 < n < oo. For (2.1) to belong to LE(E0), it 
is necessary that ao + al + - * - + an-I = 1 and Eo < A. 
One of the members of this class is the EWMA filter cor- 
responding to ai = (1 - y)yi and n = oo, alternatively 
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defined by means of the process 

/to = target 
l-Li = Xi + Y(l'i-i - Xi), 

2 

i = 1, 2,..., (2.2) 

where 0 < y < 1. The following theorem shows that this 
procedure is optimal in its class. 

Theorem 2.1. In the class of linear procedures belong- 
ing to LE(E0), the EWMA with y = (A - Eo)/(A + Eo) 
has the smallest value of I (8), for any 8. 

Proof. See Appendix A. One can see that the inertia 
function of the EWMA is given by 

I(8) = (Ay282)/(l - y2), (2.3) 

and, therefore, (2.2) is optimal in the class of linear 
schemes with average loss per observation not exceed- 
ing Eo. Note that there is only one EWMA that belongs 
to LE(Eo). 

In the presence of abrupt changes, Theorem 2.1 has 
a more limited use as compared to the optimality of the 
EWMA for processes not involving abrupt changes (e.g., 
see Bather 1963; Muth 1960). Clearly, the best estimating 
procedures cannot be linear if they are to adapt to changes 
of high magnitude. The reason is related to the fact that 
even for the best linear procedure that belongs to LE(Eo) 
with E0 < A the inertia 1(8) increases without limit as 
8 -- oc. Now we shall show how to modify the EWMA 
so as to obtain a scheme with bounded inertia. One way to 
achieve this goal is by switching to the family of Marko- 
vian procedures defined by means of the process 

/Ao = target 
= Xi + o( -iG - Xi), i = 1,2,..., (2.4) 

where w(z) is some bounded function satisfying the con- 
ditions (a) w(0) = 0, (b) zw(z) > 0, and (c) Io(z)/zl < 1. 
The last two conditions assure that fiZ is always located 
between iZ-i and Xi. In addition, I shall adhere to the 
general principle of consistency by which 'i should not 
be allowed to be inconsistent with the last observation, Xi 
(in other words, Xi should never fall too far into the tail 
of F[(x - 'i)/a]). One simple way to comply with this 
principle is by imposing an additional condition on w- 
namely, (d) -c*u < w(z) < c.a. In the Gaussian case, 
one might reasonably choose both c* and c. somewhere 
about 2. 

The main attractive points of procedures of type (2.4) 
are their ease of use and simplicity of design and analysis 
(see App. B). One can see that (w(z) = yz corresponds to 
the EWMA procedure. Two other suggested functions of 
this type are as follows: 

ol(z) = yz, -c*a/y < z < cc,/y 
= C* c, Z > c.cs/y 
= -c*o, z < -c*ca/y 

(02(Z) = yz ? exp[-(z/l,)2/2], 

yz ? exp[--(_-z/1*U)2/2], 

z>0 

z < 0. (2.5) 

N 
S- 0 
3 

-1 

-2 

-10 

............ . ...... 

/ ... 

-5 0 5 10 

Figure 1. Values of o(z) Corresponding to Symmetric 
EWMA-C Procedure With Parameters (y = .87, c = 1.89) and 
Markovian Procedure With (y = .95, f = 3.62). When (Xi) 
are independent Normal, both procedures belong to the class 
LE(Eo = 1/9) with respect to the quadratic loss function with 
A= 1. 

Both functions are equivalent to yz in the vicinity of 0. 
The parameters (c*, c*) and (/5, ,*), serve to establish 
the desired shape of 1 (8), whereas y is used to bring the 
procedure into the class LE(E0). Some plots of these func- 
tions are given in Figure 1. In what follows, I shall refer 
to Procedures (2.5) with c, = c* = c or , =/5* = f as 
symmetric. 

The function \ol (z) can be used when one is interested 
in putting a bound on I (8) with minimal increase in inertia 
for moderate or small 8. This function has the property that 
-c*a _< i - Xi < c,ar. In this case, 1(8) monotonically 
increases toward the limiting value as 8 -+ oo. In what 
follows, this procedure will be called EWMA-C. 

The function 02(z) enables one to further reduce 1 (8) 
as 181 -* oo at the expense of increase in 1(8) for mod- 
erate or small 8. Because W2(z) reaches its maximum (in 
the domain z > 0) when z. = P.a, the function I(8) 
typically reaches its maximum in the region 8 < 0 when 
8 - -z,/a = -fl. Analogously, the maximum of 1(8) 
in the region 8 > 0 is reached when 38 6 *. 

Markovian procedures are appealing in situations in 
which most of the changes are of small or moderate magni- 
tude. Their inertia for larger values of 8 can be strongly re- 
duced (at the expense of higher inertia for smaller changes) 
by switching to procedures described in Section 3. 

3. PROCEDURES INVOLVING ESTIMATION OF 
THE LAST STABLE RANGE 

In this section I consider procedures based on estimat- 
ing, at any point i, the value of ri, which represents the 
number of observations since the last point of change. To 
be more precise, the estimate will specify the number of 
observations that are declared to be relevant when comput- 
ing the current level of it. Therefore, we shall refer to as 
the last stable range. In the absence of any changes in Ii, 
the process {rr/} will generally be stationary. The mean of 
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this process is selected so as to provide (together with the 
associated procedure for estimating g) the desired level of 
Eo and shape of I (3). Therefore, though one can interpret 
the value of ri as the estimated number of observations 
since the last point of change, it should be kept in mind 
that the characteristics of this estimate are determined so 
as to address a different problem-that is, to provide a 
suitable estimate of Ai. 

3.1 Estimating the Last Stable Range 

In general, the best way of identifying the last point of 
change involves identification of all points of change by 
analyzing the whole available set of data. Such a complete 
segmentation problem is, however, very complex, taking 
into account that the previous process history can be rather 
long. Furthermore, success in solving this problem de- 
pends, to a large extent, on the adequacy of the model over 
a long period of time-something that holds very rarely 
in practical applications. Therefore, procedures proposed 
will concentrate on the last point of change only. These 
procedures go from the current point back into history and 
stop in accordance with some given rule. At this point, 
all of the preceding observations are ignored and the last 
stable range r is identified. 

In connection with the problem of estimating the cur- 
rent process mean, the likelihood ratio procedure given 
here proves to be of special value. Because this procedure 
is also useful in more complex situations involving multi- 
variate data, autocorrelated data, or vector parameters, it 
will be described in a general form. Denote 

M(n; i) = max log f(Xi, Xi-, ..... 
, I <r<n-1 ,l 

Xi-n+l I Xi-n, ...,X1; /Ao, r, l), (3.1) 

where f is the conditional density of the last n observa- 
tions computed under the assumption that the last r ob- 
servations correspond to the parameter 4to and all of the 
preceding observations correspond to the parameter /il. 
The value of r for which the maximum is achieved is de- 
noted by r(n; i). Similarly, denote 

Mo(n; i) = maxlogf(Xi, Xi-, .. , 

Xi-n+l I Xi-n ...X;), (3.2) 

where f is the conditional density of the last n obser- 
vations computed under the assumption that all of the 
observations correspond to the parameter ,/. Now the like- 
lihood ratio procedure for obtaining r' can be formulated 
as follows: 

Procedure A. Select a positive threshold h and, for 
n = 2, 3..., compute 

d(n; i) = M(n; i) - Mo(n; i), (3.3) 

until for the first time d(n; i) > h. At this point, set r = 
r(n; i). If n = i is reached and d(i, i) < h, set ri = i. 

For the sake of simplicity, only the case in which {Xi} 
is independent Gaussian with known a will be considered 
in detail. In this case 

2a2M(n; i) = -na2log(27ra2) 

- 
max [Xi-j+l -Xi (r)]2 l<r<n-I =1 = 

n 

+ [Xi-j+l 
- Xir (n -r)]2 

j=r+l 

(3.4) 

where Xi(r) = r-1 
. 

j= Xi-j+l. Similarly, 

n 

2a2Mo(n; i) = -na2 log(27ra2)-E[Xi_j+1 -Xi(n)]2 
j=1 

(3.5) 
and the maximal discrepancy d(n; i) to be used in Proce- 
dure A becomes 

d(n; i) = max r(n [Xi(r)-Xi_r(n-r)]2 (3.6) 
\<r<n-I 2nc2 

Of course, Procedure A is just one of many that can be 
suggested for identifying the last stable range. My choice 
of this procedure is based not only on its simplicity and 
power of the resulting estimates of I/, but also on formal 
comparisons against some other procedures of this kind. 
Criteria for such comparisons were described by Yashchin 
(1992). 

3.2 Adaptive Estimation of the Current Mean 

Once the estimate ri of the last stable range is avail- 
able, one can proceed to obtain ,i. I suggest the following 
scheme: 

Adaptive Exponentially Weighted (AEW) Estimation 
Scheme. Select the scheme parameters (h > 0, 0 < y 
< 1) and, for every point i, compute the estimate ji7 as 
follows: 

Step 1: Find an estimate ri of the last stable range by 
using Procedure A. 

Step 2: If Ti = r_i + 1, then set 

- y( - yi-1) 1 -y 
A'i -= i-1 + - Xi. I - y7 1 - iyri 

Otherwise, set 

(Xi + yXi_-l + * - + y?i-Xi_ri+l) 

(1X + yX + . .. + yi-'1) =(l4+y+...+yr,-) 

(3.7) 

(3.8) 

In what follows, the preceding procedure will be re- 
ferred to as the AEW(h, y) estimation scheme. The 
process of selecting a suitable pair (h, y) essentially rep- 
resents a one-dimensional search because only the pairs 
corresponding to the chosen value of Eo are acceptable. 
Note that the AEW(h = oo, y) reduces to the EWMA 
scheme with parameter y. One can see that if r = r_l + 1 
then (3.7) is simply (3.8) presented in a recursive way. In 
general, when changes in the mean of {Xi} are not very 
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frequent, one will typically observe that ri = -i'_ + 1, 
which leads to (3.7) being used most of the time. 

4. COMPARISONS OF AEW AND MARKOVIAN 
PROCEDURES 

To illustrate the performance of the AEW and 
Markovian procedures, some values of I (8) computed for 
the case in which (Xi} forms an independent Normal se- 
quence with a = 1 are presented in Table 1. The loss 
function is assumed to be quadratic with A = 1. Every 
considered procedure belongs to the class LE(1/9). In 
other words, when A/ is fixed, all of these procedures are 

"equivalent" to the EWMA scheme with y = .8 because 
their steady-state variances are all equal to a2/9. 

The class of EWMA-C procedures is obtained by in- 
creasing y from .8 and simultaneously decreasing the val- 
ues of c* and c* (to simplify the presentation, only the 
case c* = c* = c is considered). Table 1 shows that, as 
y grows, the inertia decreases for large values of 8 at the 
expense of higher inertia for small 8. This trend continues 
until y = .87, which corresponds to a minimax procedure 
within the EWMA-C family with the largest possible in- 
ertia equal to 10.5. For all the EWMA-C procedures with 
y > .87, the corresponding values of 1(8) are uniformly 
worse compared to the scheme with y = .87 (in decision 
theory, such procedures are called inadmissible). Another 

interesting phenomenon worth mentioning is that, as y 
increases to .90, the corresponding value of c needed to 
achieve Eo = 1/9 decreases to 1.86. As y continues 
to grow larger and reaches 1, however, the correspond- 
ing c increases to 2.25. This phenomenon can be ex- 
plained as follows: For a fixed value of c, the variance 
of {,i } is not a monotonically decreasing function in y. 
This variance initially decreases in y because most of 
it is related to moderate variation in the preceding val- 
ues of the observations. The impact of observations in 
the recent past that strongly deviated from the preced- 
ing ones is "washed out" by subsequent geometric aver- 
aging. As y approaches 1, however, the impact of such 
extreme observations in the recent past becomes much 
more pronounced, which causes an increase in the vari- 
ance of {ti}. 

The Markovian procedures based on W2(z) with .95 < 
y < 1 are slightly worse than the EWMA-C procedures 
with .85 < y < .87 for changes of magnitudes up to 5a 
but tend to be progressively better for changes of larger 
magnitudes. Note that the procedure with y = 1 turns 
out to be inadmissible: Its inertia is uniformly worse 
than that of the AEW scheme with y = .82. Finally, 
the AEW schemes are definitely best for changes exceed- 
ing 2cr. For smaller changes, one can find a Markovian 
scheme that has a lower inertia. The AEW (y = .85) is 

Table 1. Values of Inertia 1(S) Corresponding to EWMA, Symmetric EWMA-C Procedures, 
Symmetric Markovian Procedures Based on w2(z) Given by (2.5), and AEW Procedures 

S 

Parameters .5 1 1.5 2 3 4 5 6 7 

y c EWMA-C 

.80 oo .44 1.78 4.00 7.11 16.0 28.4 44.4 64.0 87.1 

.85 1.95 .59 2.22 4.46 6.73 9.68 10.6 10.8 10.8 10.8 

.87 1.89 .66 2.44 4.77 6.97 9.58 10.3 10.5 10.5 10.5 

.90 1.86 .81 2.89 5.44 7.64 10.0 10.7 10.8 10.8 10.8 

.95 1.91 1.31 4.36 7.58 10.0 12.4 13.0 13.1 13.2 13.2 

y 1 Markovian with 02(z) 

.80 oo .44 1.78 4.00 7.11 16.0 28.4 44.4 64.0 87.1 

.85 5.62 .48 1.85 3.92 6.42 11.7 16.0 18.6 19.3 18.4 

.90 4.20 .55 2.06 4.18 6.47 10.4 12.4 12.6 11.4 9.46 

.95 3.62 .66 2.42 4.71 6.96 10.2 11.2 10.5 8.91 7.12 
1.00 3.36 .88 3.09 5.73 8.12 11.1 11.6 10.5 8.68 6.88 

y h AEW 

.80 oo .44 1.78 4.00 7.11 16.0 28.4 44.4 64.0 87.1 

.81 8.45 .58 2.56 5.14 7.21 8.80 7.73 4.80 2.83 2.23 

.82 7.52 .75 2.94 5.40 7.17 8.18 6.60 3.98 2.58 2.18 

.83 7.05 .84 3.21 5.56 7.19 7.90 6.15 3.65 2.49 2.18 

.85 6.41 1.07 3.70 5.93 7.21 7.40 5.56 3.34 2.39 2.17 

.90 5.73 1.68 4.83 6.86 7.68 7.20 5.12 3.10 2.44 2.26 

.95 5.33 2.58 6.25 7.82 8.22 7.30 5.07 3.20 2.57 2.42 
1.00 5.22 4.27 8.06 8.84 8.83 7.51 5.17 3.30 2.67 2.51 

NOTE: All of the estimation procedures belong to the class LE(Eo = 1/9) with respect to the quadratic loss 
function, with A = 1. The observations {Xi) are independent Normal. The AEW values were obtained by 
simulation (the standard errors of the entries do not exceed 1%). 
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3. Use EWMA-C when small changes are of primary 
concern but it is also desirable to limit the exposure with 
respect to larger changes. 

4. Use a Markovian scheme based on w2(Z) when 
small changes are of primary concern but it is also im- 
portant to have a low inertia with respect to very large 
changes. 

--- EWMA-C 5. Once the type of procedure is selected, examine the 
-. - curves I () corresponding to values yo < y < 1, where 

o- = (a - Eo)/(a + Eo)-that is, the smoothing parameter 
POrOb,oo of the EWMA (see Theorem 2.1). As y increases, the 

inertia gets lower for intermediate and large changes at 
---_ AEW, the expense of small changes. Stop when a scheme with 

, 1 1 , ,suitable I () is identified. 
2 

6 
4 6 

Figure 2. Values of Inertia l(a) Corresponding to EWMA, 
Symmetric EWMA-C Procedure With Parameters (y = 
.87, c = 1.89), Markovian Procedures Based on o02(z) Given 
by (2.5) with (y = .95, 1 = 3.62), AEW Procedure with 
(y = .85, h = 6.41), and the Parabola Procedure. All of the 
estimation procedures belong to the class LE(Eo = 1/9) with 
respect to the quadratic loss function, with A = 1. The obser- 
vations {X,} are independent Normal with a known a. 

a minimax procedure: It assures that for a change of any 
magnitude the inertia will not exceed 7.89-something no 
other scheme (among those considered) can assure. Note 
that the AEW schemes with y > .95 should definitely be 
avoided because their inertia is worse compared to AEW 
schemes with y < .9. 

In Figure 2 the plots of I (8) corresponding to selected 
procedures of various types are shown. This figure in- 
cludes the curve corresponding to the parabola method 
discussed by Barnard (1959), Woodward and Goldsmith 
(1964), Wetherill (1977), and others. As can be seen from 
the figure, the method performs uniformly worse com- 
pared to the AEW (y = .85), and thus it is hardly suitable 
for practical use. The main problem with the parabola 
method is related to the fact that it takes too many points 
from the previous regime into consideration. 

4.1 Some Guidelines 

Based on considerations similar to those described in 
the foregoing paragraphs, I have developed some informal 
guidelines for choosing a suitable estimation scheme: 

1. Use EWMA only in cases in which efficient estima- 
tion of u following a change of moderate or large magni- 
tude is not important. Such situations typically occur when 
a large change is likely to lead to external intervention- 
for example, because of direct damage or in wake of its 
detection by a monitoring system. 

2. To obtain a scheme for which the largest possible 
inertia is smallest (i.e., a minimax scheme), always use 
the AEW approach. Also use the AEW approach when it 
is especially important to obtain an efficient estimate of / 
following a change of moderate or large magnitude. 

The preceding policy contains some fuzzy notions like 
"small" or "large" that need to be clarified with the con- 
text of a specific situation. For example, consider the 
situation involving independent Normal observations and 
suppose that a scheme that produces (under stable con- 
ditions), estimates {fi' } with standard deviation a/3, can 
be tolerated. Then one is facing the problem of finding 
a suitable scheme in the class LE(1/9). As can be seen 
from Figure 2, in this setting a change of magnitude be- 
low 2ao can be classified as "small" and changes above 4cr 
as "large." 

4.2 Example: The Role of Transformations 

Consider the following situation arising in the produc- 
tion process of integrated circuit chips from semiconduc- 
tor wafers. As noted in Example 1.1, wafers are usually 
processed lot by lot, with about 20 wafers per lot. At all 
times, the surface of each wafer must be kept exceptionally 
clean. Therefore, the process steps are usually followed 
by placing the wafer lots into a rinser/dryer, where they 
are rinsed by deionized filtered water. The water droplets 
are then spun off in the drying phase. In this process it 
is important to remove contaminating particles exceeding 
a certain size from the surface of the wafers. Before a 
lot is placed in the rinser/dryer, its state is assessed on 
the basis of a particle count on one of its wafers. These 
counts are used to monitor the level of contamination in 
the preceding station. In general, contamination under- 
goes various regimes depending on the state of equipment 
and other factors-and these regimes usually change in 
an abrupt fashion. The particle counts recorded before the 
rinser/dryer stage are important for providing feedback on 
the environment-but their immediate use is to determine 
how long the lot should be processed (the "dirtier" the 
process is, the longer it takes to wash the lots). For every 
level ,L of contamination, the optimal processing time is 
known, and it can be read off the operator's nomogram. 
The main problem, therefore, is to estimatex representing 
the present regime on the basis of incoming data. 

Suppose that under normal conditions the number of 
contaminating particles can be described by a Poisson 
random variable with mean about six particles per wafer 
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and it is desired to derive an estimation procedure with 
the purpose of setting the rinser/dryer processing time. 
Clearly, the process mean is no longer a location parame- 
ter of the population of interest, because the shape of the 
Poisson distribution changes along with its mean. The 
transformed process, 

Xi = 2(Yi + .375)1/2 

The Particle Counts 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

(4.1) 

where { Yi } is the original process of Poisson counts corre- 
sponding to successive test wafers, does, however, have a 
variance very close to 1 for any mean of Yi greater than 1. 
Thus, the problem becomes how to estimate the current 
process means {ti } of {Xi }, where the transformed distri- 
butions form (approximately) a location family (e.g., see 
Johnson and Kotz 1969). 

On the basis of previous experience and simulation stud- 
ies, the process engineer is content to work with estimation 
procedures that under stable conditions produce unbiased 
estimates {iZi} having a variance of 1/9. The problem, 
therefore, is to identify a procedure in the class LE(1/9) 
that has a suitable inertia curve I (8). Though most of the 
changes are anticipated to be of magnitude not exceed- 
ing 2, the engineer would like to limit his exposure with 
respect to changes of very large magnitude. Therefore, 
the EWMA-C scheme with y = .85 and c* = c* = 1.95 

appears quite appropriate (the inertia curve corresponding 
to this scheme is given in Table 1). In Figure 3 this scheme 
is applied to a sequence of counts of contaminating parti- 
cles [note that the y-scale of the plot has been transformed 
in accordance with (4.1)]. For the sake of comparison, we 
also apply the EWMA scheme with y = .8 and the AEW 
scheme with (y = .85, h = 6.41). The plot shows two 
changes in the level of {Yi}, at points 20 and 41. The 
EWMA-C procedure adapts to the second change much 
faster than the usual EWMA. The AEW adapts better to 
the first change. It detects very quickly the presence of 
the second change but overreacts to the point 42. 

Variance-stabilizing transforms exist for many other 
families of distributions. After such a transform, the pro- 
posed framework of analysis becomes relevant again, pro- 
vided that our basic assumptions related to the properties 
of loss functions (as outlined in Sec. 1) are acceptable for 
the transformed data. A more elaborate discussion on this 
subject was given by Yashchin (1992). 

5. ESTIMATION OF THE MEAN WHEN THE 
VARIANCE IS UNKNOWN 

In many practical situations, the scale parameter a of 
the process also needs to be estimated and monitored on 
a periodic basis. In such situations, using a scheme {i } 
derived under the assumption that a is at some fixed level 
(when in fact it is at a higher level) can lead to unneces- 
sary corrective actions and introduce a condition known 
in the area of process control as "hunting." In this sec- 
tion we consider schemes that are better suited to keeping 
the variance of {ji } under control and thus help to avoid 
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Figure 3. EWMA (with y = .8, dashed line), EWMA-C (with 
y = .85, c* = c, = 1.95, dotted line), and AEW (with y = 
.85, h = 6.41, dashed-dotted line) Estimating Procedures Ap- 
plied to Counts of Contaminating Particles Found on Succes- 
sive Wafers Transformed in Accordance With (4.1). The raw 
data is given in the table above the plot. Both procedures 
belong to the class LE(Eo = 1/9). 

this condition. We shall assume that {Xi } are independent 
and distributed in accordance with the cdf F[(x - gti)/ai] 
and that L(Ti, uti) is a function of (Ti - Ati)/ai. Under 
such conditions, it is natural to demand that any "good" 
estimation scheme be location-scale equivariant; that is, 
Ai (bXi + c, bXi_ + c, ...) = bii(Xi, Xi_, ... .)+ c, for 
any i, b, and c (see Sec. 1). To compare various estimation 
schemes, we restrict our attention to a class of schemes 
that produce, under stable conditions, the same expected 
loss per unit time: 

Definition 5.1. The estimation process {,i } belongs to 
the class LSE(Eo) if it is location-scale equivariant, and 
when ci =a foralli, ti = ti-SCr fori = 1, ..., T < oo, 
and pi = Lt for i > T, then limj-,oo ET,rL(Ir+j, t) = 

Eo, for any T, 8, AI, and a. 

The inertia function I(8) for such procedures is also 
defined by (1.2). 

The LSE(Eo) class of schemes can be simply con- 
structed on the basis of procedures considered in the pre- 
vious sections. First of all, because any linear procedure 
(2.1) belongs to LSE(Eo), Theorem 2.1 continues to 
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hold for this class. Furthermore, the class of Markovian 
procedures can be generalized by substituting any scale- 
equivariant estimator -i_l for a into the approximately 
chosen function w(z I a) in (2.5). In cases in which 
changes in a are of relatively low magnitude, the results 
of the previous sections suggest the following estimator 
of the current level of a2: 
-2 --2 2 02 = -2 = O 

-2 = min {c,^2_l, yai2 + (1 - y.)(Xi- Xi_)2}, 

(5.1) 

where ao is some initial value of a. Because (Xi - 
Xi_ )2/2 is an unbiased estimate of a2, the sequence {a2} 
is a scale-equivariant estimating scheme that is robust with 
respect to possible changes in the process mean. The value 
of y, < 1 is chosen close to 1, depending on the relevant 
range of changes in a. By choosing Ya = 1, we would ef- 
fectively make the assumption that a = ao and end up with 
the LE(Eo) class. The constant Ca is chosen somewhere 
above 1, depending on the estimated standard deviation 
of /i_l. The main rationale for using a finite value of c, 
is to prevent the estimate 6i2 of the current variance from 
being too strongly affected by a possible abrupt change 
in /u. Because for the Normal case 

var (52/a2 c, = oo) = (1 - y ?)(2 + y,)/(l + Y), 

(5.2) 
the choice 

c,- 1 + [(1 - y,)(2 + y)/(l + Ya)]1/2 (5.3) 

ensures that, even in the case of a very strong change in 
tz, its effect on the estimated current variance will never 

exceed one standard deviation. 
Substituting (5.1) into (2.5) and using any of the 

resulting functions Ol (z| a121) or o)2(Z ^i2 1) in (2.5) 
yields a location-scale equivariantjoint estimation scheme 
{i', 2}. Unfortunately, it is no longer easy to compute Eo 
and 1(8) numerically because {Ti} is no longer a Markov 
chain. This computation, however, can be done by us- 
ing Monte Carlo methods. A suitable Markovian pro- 
cedure that belongs to LSE(Eo) can usually be obtained 
by first selecting an appropriate LE(E0) scheme under 
the assumption that a = ao. Then the value ya (typi- 
cally in the range between .9 and 1) is selected on the 
basis of anticipated fluctuations in a: The smaller the 
anticipated changes in a, the closer y, can be chosen 
to 1. Finally, ca is computed in accordance with (5.3) 
and the parameters of the original LE(E0) scheme are ad- 
justed so as to obtain an expected loss per unit time Eo 
for the final LSE procedure. Table 2 gives the values of 
I(S) corresponding to the symmetric Markovian proce- 
dure with W(2(z I /-il) = yz exp[-(z I fi_1)2/2] from 
LSE(1/9). The observations are assumed to be indepen- 
dent normal with standard deviation a, and the values of 
ai_l are obtained by using Process (5.1) with parameters 
Ya = .97 and c, = 1.2. 

Once again, the LSE procedures obtained on the basis 
of (2.4) only extend the tracking ability of the EWMA to 
larger values of 8 and limit the inertia for very large 8. 
In cases in which further reduction of 1(8) with respect 
to moderate and large 8 is desired, however, one should 

Table 2. Values of Inertia 1(8) Corresponding to Location-Scale Equivariant Procedures That 
Belong to LSE(Eo = 1/9) 

8 

Parameters .5 1 1.5 2 3 4 5 6 7 

Y p Markovian with 2 (z) 

.80 oo .44 1.78 4.00 7.11 16.0 28.4 44.4 64.0 87.1 

.85 5.80 .49 1.87 3.95 6.47 11.9 16.6 19.8 21.1 20.5 

.90 4.34 .57 2.11 4.24 6.58 10.7 13.1 13.8 12.8 10.9 

.95 3.77 .71 2.52 4.86 7.21 10.7 12.2 11.9 10.5 8.50 
1.00 3.52 .94 3.25 6.03 8.59 12.0 13.1 12.4 10.7 8.60 

y h AEW 

.80 oo .44 1.78 4.00 7.11 16.0 28.4 44.4 64.0 87.1 

.81 9.00 .60 2.51 5.10 7.29 9.15 8.32 5.53 3.17 2.35 

.82 8.05 .72 2.81 5.36 7.26 8.48 7.26 4.58 2.82 2.21 

.83 7.50 .82 3.11 5.59 7.30 8.13 6.71 4.17 2.72 2.20 

.85 6.78 1.04 3.61 5.98 7.38 7.73 6.03 3.64 2.56 2.18 

.90 5.93 1.64 4.81 6.94 7.85 7.40 5.52 3.34 2.50 2.26 

.95 5.53 2.60 6.40 8.10 8.52 7.60 5.41 3.39 2.62 2.45 
1.00 5.40 4.30 8.46 9.28 9.21 7.85 5.52 3.46 2.72 2.55 

NOTE: The top part of the table corresponds to symmetric Markovian schemes based on )2(z). The bottom 
part represents the AEW schemes. The observations (X}i are independent Normal. An entry corresponding to 8 gives the inertia resulting from an abrupt shift in it by Sa. The values of i-1 used in the procedures at point i are obtained by using the Process (5.1) with parameters y, = .97 and c, = 1.2. The values were obtained by simulation (the standard errors of the entries do not exceed 1%). 
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use the AEW approach. To obtain an LSE(Eo) version 
of the AEW estimation scheme, one can follow the steps 
outlined previously-that is, by starting with a satisfac- 
tory AEW(h, y) scheme from LE(Eo), computed under 
the assumption that a = ao. Then a suitable value of 
y, is selected and the corresponding c, is computed by 
using (5.3). Finally, the values -i_l as defined by (5.1) 
are substituted for a in this procedure and the value of 
h is adjusted so as to assure that the expected loss per 
observation (under stable conditions) is Eo0. 

The values of 1(S) corresponding to several AEW 
schemes useful in practical applications are given in 
Table 2. The values of i_-1 used in (3.6) at point i are ob- 
tained by using the process (5.1) with parameters y, = .97 
and ca = 1.2. As can be seen from this table, the fact that 
a needs to be estimated means that a higher value of h is 
needed to obtain an LSE(1/9) procedure. Accordingly, 
the values of I (8) are generally higher than those given 
in Table 1. The difference reflects the price to be paid for 
giving up the assumption that a is known. 

As noted previously, the process of selection of a suit- 
able scheme starts by assuming that a is known, which en- 
ables one to select a scheme by following steps outlined in 
Section 4.1. In the subsequent process of selecting a suit- 
able value of y, one can make use of another concept- 
namely, the inertia curve-with respect to changes in a. 
This curve is defined by means of the formula 

H 

I,(f) = lim E {(r) L(T+j )-E, 4(f) = )im {E} L(TIT+j, ii) - Eo}, 
T-joo= j=l 

(5.4) 

where E) L(,ZT+j, 1t) is the expected loss incurred j 
units of time after the change in a by afactor f at time T. 
This concept enables one to design an LSE(Eo) scheme 
that achieves a desired trade-off between excess losses 
associated with changes in it and a. 
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Figure 4. Values of Inertia 1(a) Corresponding to AEW Pro- 
cedures With y = .85 That Belong to LSE(Eo = 1/9). The 
remaining scheme parameters are h = 6.41, y, = 1 (dotted- 
dashed line), h = 6.78, y, = .97, c, = 1.2 (dashed line), 
h = 7.15, y, = .95, c5 = 1.3 (dotted line), and h = 8.35, 
Y7 = .9, c, = 1.4 (twin-dotted line). 
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Figure 5. Values of Inertia I (f) With Respect to Changes in 
I Corresponding to AEW Procedures With y = .85. All the 
procedures belong to LSE(Eo = 1/9). The scheme parameters 
are given in the title of Figure 4. 

As an example, consider three AEW schemes with 
y = .85 that belong to LSE(1/9). The inertia curves 
I (a) and I (f) corresponding to these schemes are shown 
in Figures 4 and 5, respectively. The first scheme (h = 
6.41, ya = 1) is, essentially, an LE(1/9) scheme derived 
under the assumption that a = a0. This scheme lacks the 
capability to adapt to a different level of a. If it turns out 
that a > a0, the process {ii } will tend to follow fluctu- 
ations in {Xi } too aggressively, leading to increased loss 
per unit time. The LSE schemes are obtained by decreas- 
ing yf. The scheme (h = 7.15, ya = .95, ca = 1.3) is 
capable of adapting to a new level of a, but it comes at 
the expense of higher inertia with respect to changes in 
tt. This trend continues for the scheme (h = 8.35, Ya = 
.9, Ca = 1.4), which assures lower values of I,(f) at the 
expense of higher values of I(z). Based on the curves 
shown in Figures 4 and 5, the designer is able to select a 
suitable scheme. In general, the more stable are the val- 
ues of ai, the closer to 1 can y, be chosen. For example, 
if the scheme with y, = .9 is adopted, a single change 
in Lt of magnitude from 2a to 6a will "cost" an addi- 
tional one unit of inertia, compared to the scheme with 
Ya = .95 (see Fig. 4). On the other hand, I (1.3 1 ya = 
.95) - I (1.3 1 Ya = .9) _ 1). Therefore, if changes in a 
typically do not exceed 30% and occur as often as changes 
in A/, one can expect satisfactory performance from the 
scheme {ji, a } consisting of AEW(h = 7.15, y = .85) 
and (5.1) with (y, = .95, Ca = 1.3). If such changes in 
a occur less often, one should use a larger value y,-for 
example, .97. Inertia curves corresponding to this scheme 
can also be found in Figures 4 and 5. 

6. AN EXAMPLE 

Consider once again the situation arising in the pro- 
duction process of integrated circuit chips from semicon- 
ductor wafers. Let us focus on one of the process steps 
in which the layer of silicon dioxide covering the wafer 
must be etched, by chemical means, until the layer of 
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Table 3. The Generalized Markovian Procedure {,i} and 
the Location-Scale Equivariant AEW Procedure {ii} 

Corresponding to the Example 

i x 
_ 

I Xj 

1 1.006 
2 1.037 
3 .944 
4 .957 
5 1.012 
6 1.035 
7 .917 
8 1.067 
9 1.121 
0 .935 
1 .911 
2 1.030 
3 1.018 
4 .941 
5 1.192 
6 1.142 
7 1.138 
8 1.188 
9 1.080 
!0 1.228 
!1 1.153 
!2 1.141 
!3 1.179 
!4 1.190 
!5 1.184 
6 .880 
!7 .951 
8 .875 
9 .870 
0 .811 
l1 .871 
2 .890 
3 .866 
4 .794 
5 .868 
6 .854 
7 .905 
8 .885 
9 .885 
0 .977 

1 
1 
1 
1 
1 

1 1 
1 
1 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
4 

,ri 

.060 

.059 

.059 

.059 

.058 

.057 

.058 

.060 

.060 

.063 

.062 

.063 

.062 

.062 

.068 

.067 

.066 

.065 

.066 

.067 

.067 

.066 

.065 

.064 

.063 

.069 

.068 

.068 

.067 

.066 

.066 

.065 

.064 

.064 

.063 

.062 

.062 

.061 

.060 

.060 

'li 

1.001 
1.005 

.997 

.993 

.995 

.999 

.987 

.999 
1.022 
1.009 

.994 

.998 
1.000 

.993 
1.056 
1.068 
1.076 
1.095 
1.093 
1.120 
1.123 
1.125 
1.131 
1.138 
1.143 
1.029 
1.018 

.990 

.970 

.934 

.927 

.923 

.916 

.894 

.891 

.887 

.889 

.888 

.888 

.902 

ri 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
3 
4 
5 
6 
7 
8 
9 

10 
11 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

/zi 

1.006 
1.023 

.992 

.981 

.990 
1.000 

.982 
1.000 
1.023 
1.007 
.990 
.997 

1.000 
.990 

1.023 
1.043 
1.154 
1.165 
1.142 
1.163 
1.161 
1.157 
1.161 
1.166 
1.170 
.880 
.918 
.902 
.892 
.870 
.870 
.875 
.873 
.857 
.859 
.858 
.867 
.870 
.872 
.890 

NOTE: The observations {xi} correspond to successive sample aver- 
ages of four measurements taken from each wafer. Both procedures 
belong to the class LSE(Eo = 1/9). The third column contains the cur- 
rent estimates {(} used in these procedures and computed by using 
the Process (5.1) with parameters y, = .97 and c, = 1.2, starting at 
a0 = .06 mic. The values {(I} correspond to the estimated last stable 
range (i.e., location of the last point of change) and are used in the 
AEW procedure. 

metal beneath it is reached. Wafers are processed one 
at a time and the processing time depends on the aver- 
age of four measurements of oxide film thickness taken 
at preselected locations on the wafer-in general, thicker 
layers require longer etching times. Analysis of the pro- 
cess data suggests that the sample means {Xi tend to be 
independent with moderate changes in variance but pos- 
sibly strong changes in mean. Therefore, if the process 
mean corresponding to the current regime were known, 
the best etching time could be determined by means of a 

known formula. The main problem in this situation is how 
to adapt, as quickly as possible, to the new process mean. 

Consider a set of data corresponding to 40 successive 
wafer averages shown in Table 3. Two procedures are used 
to estimate the current process level. The first one, {7i }, 
is the LSF Markovian procedure (2.4) with w2(z I ai-1) 
given by (2.5). The scheme parameters are (y = .9, B/ = 
4.34) and the value {i'-l} is obtained by using Process 
(5.1) with parameters (Ya = .97, Ca = 1.2). The initial 
(and target) levels of {Xi} and its standard deviation are 
target = 1 micron and ao = .06 micron, respectively. 
The second estimation scheme, {ji }, is the LSE version 
of the AEW procedure with (y = .85, h = 6.78) and the 
values {/i-l } used in (3.6) to determine the last point of 
change are obtained by means of the process (5.1). The 
values of I (8) corresponding to these two schemes can be 
found in Table 2. 

Both of the processes under consideration belong to the 
class LSE(1/9); that is, their steady-state variance is a2/9. 
In other words, both {i } and {ji } belong to the same class 
as the EWMA with y = .8. Their adaptive capability with 
respect to larger changes, however, is much higher. The 
computed values of these sequences, along with the values 
of {aI}, are given in Table 3. The corresponding plot is 
shown in Figure 6. As can be seen from this figure, the 
data undergo two abrupt changes in A/, after the points 14 
and 25. The LSE Markovian procedure initially tracks 
the first (smaller) change better, but by the third point af- 
ter the change, the AEW procedure is able to identify the 
last point of change and, as a result, it tracks the subse- 
quent data better. In particular, it immediately identifies 
the second point of change and adapts accordingly, but the 
LSE Markovian procedure behaves in a more conservative 
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Figure 6. The Generalized Markovian Procedure {iiW} (dot- 
ted line) and the Location-Scale Equivariant AEW Procedure 
{,ji} (dashed line) Corresponding to the Example and Table 3. 
Both procedures belong to the class LSE(Eo = 1/9). The bot- 
tom plot contains the current estimates fi) used in these 
procedures and computed by using the Process (5.1). 
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fashion. These observations illustrate the general property 
that the LSE Markovian procedure can be expected to per- 
form better than the LSE version of the AEW scheme with 
respect to smaller changes but worse with respect to larger 
changes. 

7. CONCLUDING REMARKS 

To decide which estimation procedure is suitable in any 
given situation, it is not necessary to impose a model on 
the process of changes. In fact, such models frequently 
do not have solid foundations and can lead to schemes 
with low tracking capability. Similarly, tuning the estima- 
tion scheme to past data, as is frequently done when han- 
dling engineering process control models (e.g., see Hunter 
1986) can hardly be recommended for models involving 
abrupt changes because the pattern of changes that has 
been observed in the past is not necessarily of the type 
that one wants protection against in the future. The two- 
stage approach discussed in this article enables one to de- 
sign estimation schemes based on the information that the 
process owner is likely to possess. At the first stage, we 
restrict our attention to the schemes that generate, under 
stable conditions, the same loss per observation, Eo. In 
the second stage, we select a scheme with a suitable (low) 
inertia. The selection process typically reduces to a one- 
dimensional search because of the constraint related to Eo. 

In spite of the optimality property of the EWMA pro- 
cedure proven in Theorem 2.1, the procedure cannot be 
recommended except in the very special situations noted 
in Section 4.1. This procedure is of value only insofar as 
it can be modified so as to overcome its drawbacks. 

The function I (8) can be used as a basis for a risk index 
computed by imposing a distribution on the values of 8, but 
such an averaging can also mask some important features 
of the procedure of interest, such as inadmissibility. Even 
if such an approach is adopted to simplify the selection 
process, it is still recommended to examine the function 
I (8) itself before a procedure is selected for use. 

The proposed approach can be used in situations in 
which the distribution of {Xi} depends on nuisance pa- 
rameters that also need to be estimated on the basis of 
the same data. In particular, when the nuisance parameter 
corresponds to the scale of {Xi}, the methods discussed in 
Section 5 lead to estimation, the properties of which can be 
easily assessed within the proposed framework, especially 
when {/ } belongs to LSE(Eo). In many practical situa- 
tions in which no LE or LSE estimation is possible, one 
can find data transformations that enable one to handle the 
problem in this framework, as illustrated by Example 4.2. 

The relative merits of the different schemes discussed in 
this article are by no means universal: They may depend 
on the particular form of the loss function, as well as as- 
sumptions of Normality and independence. The main pur- 
pose of this work is to put forward a simple and coherent 
framework for selecting an estimation scheme appropriate 

and derivation of estimation procedures discussed in this 
work are, however, fully usable in more general situations 
involving serially correlated or multivariate data, though 
the details will vary. The proposed approach is also ap- 
propriate for estimating the current level of process pa- 
rameters other than the population mean, as well as for 
handling other types of change in these parameters. 
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APPENDIX A: PROOF OF THEOREM 2.1 

For the Procedure (2.1), the expected loss j units of 
time after the change at time T is 

- 
j-1 

ET^,L(rT+j, (A) = Aa2 * E E ak(XT+j-k -) 
k=O 

n-1 n-1 2 

+ ak (XT+j-k - + Sr) -8cr Eak 
k=j k=j _ 

n-1 2n-1 

= A ak A82 ak , 
k=O \k= 

j = 1,2,...,n-1, (A.1) 

and, after n units of time, the adaptation is complete; that 
is, 

n-l 

ET,sL(jT+j, AL) - Eo = A ? ak2, 
k=O 

j>n. 

(A.2) 
The problem, therefore, becomes as follows: minimize 

n-I n-I 2 

I(S)/(A82) = E E ak= 
j=I k=j 

with respect to {ak} and n subject to constraints 

n-l 

Eo/A = 0 (A.3) 
k=0 

and 
n-I 

Eak-1 = 0. 
k=O 

(A.4) 

For a fixed value of n, this is a fairly typical quadratic 
optimization problem. When n-1 < Eo/A < 1, its solu- 
tion can be found by introducing the Lagrange function 

=n- G=E I 
j=l 

in a given situation. The basic ideas used for comparison 

j-1 
2 

n-I 

-Z ak + -A E+ak o/A 
k=0 k=O 

+ n-1 a 

+1 Eak - 1 (A.5) 
k=0O 
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and solving the equations 

aG 
n-I n-( 

- = -2 Lak) +2ai + = 0, 
aai j=i+l k=j 

aG 
= 2Xan-1 + Xi = 0, 

Oan-1 

i = 0,1 ...n-2 

(A.6) 

together with the constraints (A.3) and (A.4). Now, by 
leaving the bottom equation intact and subtracting each 
equation from the one above it, the system (A.6) can be 
written in the form 

0 
0 

0 
0 

-(1 + ) 

0 

0 
0 

-1 -1 ... -1 

-(1 + ) -1 ... -1 
X -(1 + .) ... -1 

0 

ao 
al 
a2 

an-2 

ann-1 

0 

-(1 + x) 

2- 2 

0 
0 
0 

0 
1 

O 

Denote y = (1 + 2X - /1 + 4X)/(2X). Then, after 
algebra, one can show that the solution of the system 
A.3, A.4) can be represented in the form 

(1 - y)yJ(l + y2n-2j-1) 
aj= I-y2n , j=0,1,.... 

Markov chain. Let the discretization interval be Da, and 
let {mDa, m = 0, ?1, ?2, .. .} represent the discretized 
values of i . Denote by P (IL) the transition matrix of this 
chain corresponding to the process mean /t. For exam- 
ple, for the symmetric Markovian scheme based on w2(Z) 

given by (2.5), the elements of this matrix are 

Pmj(gl) = P{(j- .5)Da < X 

+ w2(mDa - X) < (j + .5)Do} 

= F[mD + Bfty((j - m + .5)D/B) - t/ar] 

- F[mD + Bty((j - m - .5)D/3) - //a], 

(B.1) 

where F is the cdf of the normalized X and ty (y) is the 
solution of the equation t[1 - y exp(-t2/2)] = y. Now 
the vector of steady-state probabilities nro = {7r(m)} is 
computed by solving the equations 

(B.2) 

and the steady-state loss per unit time is m 7ro(m)L 
(mDa, ,g). For a fixed value of y, a value fi is found 

) for which this sum is equal to Eo. 
To obtain the values of inertia function for a given pair 

(y, f) corresponding to a scheme from LE(Eo), let us 
first compute the vector rj = {1rj(m)} that represents 

some the distribution of the discretized values of the scheme 
(A.7, given that a change from ft to AL + Sa has occurred j 

observations ago. These values are determined from the 
relation 

1- 1, 

(A.8) 
where y is determined from (A.3); that is, 

1- y 1 - y4n + 2n( - y2)y2"-1 
1+ 

* (1- y2n)2= Eo/A. (A.9) 
l+ y (1- y2n)2 

The value of A1 is then determined from the last equation 
of (A.6). Theorem 2.1 is obtained as a limiting case of 
(A.8) and (A.9) when n -> oo. 

It is interesting to note that (A.8) also gives weights 
of the optimal linear predictor for the integrated first or- 
der moving average process (see Wu, Hosking, and Doll 
1992). 

APPENDIX B: DESIGN AND ANALYSIS OF 
MARKOVIAN ESTIMATION SCHEMES 

In this appendix, I shall briefly discuss the computation 
procedure for analysis of Markovian procedures. This 
procedure served as a basis for software used for analysis 
of schemes discussed in this article. It shows that the 
problem of design and analysis can be solved by using 
conventional analysis of Markov chains. 

To design a scheme that belongs to LE(Eo) in the 
case in which {Xi } are independent, I shall discretize the 
space of {/i } and approximate this process by a discrete 

7rj = 7rjl P(t + 3a), j = 1, 2,...,H, (B.3) 

where P (tz + 3a) is the transition matrix corresponding 
to the mean (tz + acr). Now 1(3) is obtained by 

H 

1(a)=L L rj(m)L(mDa, L + a)-Eo 
j=1 _m 

(B.4) 
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REFERENCES 

Barnard, G. (1959), "Control Charts and Stochastic Processes," Journal 
of the Royal Statistical Society, Ser. B, 21, 239-257. 

Bather, J. (1963), "Control Charts and Minimization of Costs," Journal 
of the Royal Statistical Society, Ser. B, 25, 49-80. 

Chen, C., and Tiao, G. C. (1990), "Random Level-Shift Time Series 
Models, ARIMA Approximations and Level-Shift Detection," Jour- 
nal of Business & Economic Statistics, 8, 83-97. 

Chernoff, H., and Zacks, S. (1964), "Estimating the Current Mean of 
a Normal Population Which Is Subject to Changes in Time," The 
Annals of Mathematical Statistics, 35, 999-1018. 

Hunter, J. S. (1986), "The Exponentially Weighted Moving Average," 
Journal of Quality Technology, 18, 203-210. 

Johnson, N. L., and Kotz, S. (1969), Distributions in Statistics 
(Vols. 1-4), New York: John Wiley. 

Kenett, R., and Zacks, S. (1992), "Tracking Algorithms for Processes 
With Change Points," unpublished manuscript. 

TECHNOMETRICS, AUGUST 1995, VOL. 37, NO. 3 

322 

tro = troP(u(), rol = 1, 



ESTIMATING THE CURRENT MEAN OF A PROCESS SUBJECT TO ABRUPT CHANGES 

McCulloch, R. E., and Tsay, R. S. (1993), "Bayesian Inference and Pre- 
diction for Mean and Variance Shifts in Autoregressive Time Series," 
Journal of the American Statistical Association, 88, 968-978. 

Muth, J. F. (1960), "Optimal Properties of Exponentially Weighted 
Forecasts," Journal of the American Statistical Association, 55, 
299-306. 

West, M. (1986), "Bayesian Model Monitoring," Journal of the Royal 
Statistical Society, Ser. B, 48, 70-78. 

Wetherill, G. B. (1977), Sampling Inspection and Quality Control, 

London: Chapman and Hall. 
Woodward, R., and Goldsmith, P. L. (1964), Cumulative Sum Tech- 

niques (ICI Monograph 3), London: Oliver and Boyd. 
Wu, L. S., Hosking, J. R. M., and Doll, J. M. (1992), "Business Plan- 

ning Under Uncertainty," International Journal of Forecasting, 8, 
545-557. 

Yashchin, E. (1992), "On the Problem of Estimating the Current 
Mean of Processes Subject to Abrupt Changes," Research Report 
RC#17923, IBM, Yorktown Heights, NY. 

TECHNOMETRICS, AUGUST 1995, VOL. 37, NO. 3 

323 


	Cover Page
	Article Contents
	p.311
	p.312
	p.313
	p.314
	p.315
	p.316
	p.317
	p.318
	p.319
	p.320
	p.321
	p.322
	p.323

	Issue Table of Contents
	Technometrics, Vol. 37, No. 3, Aug., 1995
	Front Matter [pp.340-340]
	A Probabilistic and Statistical View of Fuzzy Methods [pp.249-261]
	Discussion: Fuzzy Logic Control Technology: A Personal Perspective [pp.262-266]
	Discussion: Fuzzy Logic: Better Science? Or Better Engineering? [pp.267-270]
	Discussion: Probability Theory and Fuzzy Logic Are Complementary Rather Than Competitive [pp.271-276]
	Discussion: On the Very Real Distinction between Fuzzy and Statistical Methods [pp.276-281]
	Discussion: Fuzzy Thinking [pp.282-283]
	Discussion: Fuzzy Clustering at the Intersection [pp.283-286]
	[A Probabilistic and Statistical View of Fuzzy Methods]: Reply [pp.287-292]
	Design and Analysis for an Inverse Problem Arising from an Advection-Dispersion Process [pp.293-302]
	Predicting Using Box-Jenkins, Nonparametric, and Bootstrap Techniques [pp.303-310]
	Estimating the Current Mean of a Process Subject to Abrupt Changes [pp.311-323]
	Statistical Applications of a Metric on Subspaces to Satellite Meteorology [pp.324-328]
	A Comparison of Methods for Univariate and Multivariate Acceptance Sampling by Variables [pp.329-339]
	Book Reviews
	untitled [p.341]
	untitled [pp.341-342]
	untitled [pp.342-343]
	untitled [pp.343-344]
	untitled [pp.344-345]
	untitled [p.346]
	untitled [pp.346-347]
	untitled [pp.347-348]
	untitled [p.348]
	untitled [pp.348-349]
	untitled [pp.349-350]
	untitled [pp.350-351]
	untitled [p.351]
	untitled [pp.351-353]
	untitled [p.353]

	Editor Reports on New Editions, Proceedings, Collections, and Other Books
	untitled [pp.353-354]
	untitled [p.354]
	untitled [pp.354-355]
	untitled [p.355]
	untitled [p.355]
	untitled [p.355]
	untitled [pp.355-356]
	untitled [p.356]
	untitled [p.356]
	untitled [pp.356-357]
	untitled [p.357]

	Letters to the Editor
	Comments on Lin (1993) [pp.358-359]

	Back Matter [pp.360-360]



